GUJARAT UNIVERSITY
 B.E Sem IVth (Electrical) Sub: Engineering Electromagnetics Question Bank

Q. 1	What are scalars and vectors? Do vectors obey commutative, associative and distributive laws? With the help of suitable example explain dot product and cross product of vectors
Q. 2	Explain cartesian, cylindrical and spherical co-ordinate system
Q. 3	With the help of a suitable example explain how a vector in Cartesian system can be converted into (i) Cylindrical system (ii) Spherical system
Q. 4	Explain Coulomb's law. A charge $\mathrm{Q}_{1}=-20 \mu \mathrm{C}$ is located at $\mathrm{P}(-6,4,6)$ and a charge $\mathrm{Q}_{2}=50 \mu \mathrm{C}$ is located at $\mathrm{R}(5,8,-2)$ in free space. Find the force exerted on Q_{2} by Q_{1} in vector form. The distance given are in metres
Q. 5	Derive the formula for electric field intensity at a point on the y -axis due to line charge which lies on the z -axis
Q. 6	Derive the formula for electric field intensity at a point on the z -axis due to sheet charge which lies on the $\mathrm{z}=0$ plane
Q. 7	Define electric flux and electric flux density. State the formula for electric flux density due to line charge and sheet charge. Also give the relationship between electric flux density and electric field intensity
Q. 8	Two co-axial conducting cylinders having inner radius of ' a ' and outer radius of ' b ' metres have a charge distribution of ρ_{s} on the outer surface of inner cylinder. Use Gauss' law to find 'D' in all the regions
Q. 9	Discuss the application of Gauss' law to differential volume element and hence discuss the concept of divergence. State the forms of divergence in Cartesian, cylindrical and spherical systems
Q. 10	What is work done? Explain how will you find the work done in carrying a point charge of ' Q ' coulombs from initial position ' A ' to final position ' B ' in an electric field ' E '
Q. 11	Define absolute potential and potential difference. Explain how will you find potential and potential difference due to several point charges
Q. 12	Explain potential gradient. Prove that $\mathrm{E}=-\mathrm{grad} \mathrm{V}$
Q. 13	What is an electric dipole? Derive the formula for electric field intensity and electric potential due electric dipole
Q. 14	What is current and current density? State the relationship between I and J and between J and ρ_{v}. Also derive the continuity equation
Q. 15	Write a short note on boundary conditions between conductor and free spac
	Write a short note on bound
Q.	Derive Poisson's and Laplac
Q. 1	Explain Uniqueness theorem
Q. 19	State Biot Savart's law. Derive the formula for incremental magnetic field intensity due to differential current element
Q. 20	State Ampere's circuital law. Using Ampere's circuital law find 'H' due to coaxial cable in all the regions

Q.21	Discuss the application of Ampere's circuital law to differential surface element and hence prove that curl $\mathrm{H}=\mathrm{J}$			
Q.22	Explain Stoke's theorem. Also state Maxwell's equations in integral form and point form			
Q.23	Explain in detail scalar and vector magnetic potentials			
Q.24	Explain Lorentz force equation. A point charge of $\mathrm{Q}=-1.2 \mathrm{C}$ has velocity $\mathrm{v}=$ $\left(5 \mathrm{a}_{\mathrm{x}}+2 \mathrm{a}_{\mathrm{y}}-3 \mathrm{a}_{\mathrm{z}}\right) \mathrm{m} / \mathrm{s}$. Find the magnitude of force exerted by (a) $\mathrm{E}=-18 \mathrm{a}_{\mathrm{x}}+$ $5 \mathrm{a}_{\mathrm{y}}-10 \mathrm{a}_{\mathrm{z}} \mathrm{V} / \mathrm{m}(\mathrm{b}) \mathrm{B}=-4 \mathrm{a}_{\mathrm{x}}+4 \mathrm{a}_{\mathrm{y}}+3 \mathrm{a}_{\mathrm{z}} \mathrm{T}(\mathrm{c})$ Both are present simultaneously			
Q.25	Write a short notes on magnetic boundary conditions	$	$	Qhat is self inductance and mutual inductance? Derive the formula for
:---				
inductance of a solenoid.				

